
Issue 7 January 2013

HAPPY New Year!

About SFA

Objectives

Local centers

Welcome you all to join as members of SFA! Please find the membership form inside; kindly fill in and contact Secretary of SFA through email.

Experts and experiences:

- Prof. Suhas Joshi,
 IIT, Bombay
- Sri.P.Jayapal,
 CEMILAC, Bangalore

Message from our President

Dear readers,

I wish all of you all the very best on the dawn of New Year 2013! I am sure that you may find the seventh issue of SFA newsletter useful as you observe and appreciate some of the experiences narrated by the experts in the rare fields like machinability issue and quality-demands in aero sector worth reading.

It is appreciated that the local centres of SFA convene one-day meetings sharing valuable expertise to younger generations. It is my humble appeal to all my members to nurture brotherhood and revelry towards one another.

While you appreciate that our professional work involves one who produce and one who consume, I call your attention to a saying that: Important lessons of the past may steer us to win-win situations in the year ahead!

Best wishes to all the readers!

K.Tamil Mani PRESIDENT, SFA

Page 2 of 15

From the Desk of Editors

Happy New Year 2013! It is indeed nostalgic to look back when you browse through the seventh issue of the Newsletter of Society for Failure Analysis (SFA). Our efforts to build the society have seen progressive growth with the conduct of several activities by our local centres at various places. The centres have started organizing their own general body meetings which is a sign of autonomy that has evolved among local centres.

In this issue, we solicited articles from experts in the rare area of machinability on the one hand and another from a quality conscious field of aero sector.

We thank the authors for their contributions which are worth their efforts.

We take this opportunity to appeal to the Indian industry to use SFA as a forum to share their experiences on trouble shooting. A great way to add content to this newsletter is to include a calendar of upcoming events. The details of important forthcoming international and national events are included; so also

the books recently published on the topics of the subject.

We value your comments, which really boost our enthusiasm to perform better. Therefore, as always, your views and comments, mailed to tjk@igcar.gov.in or param@igcar.gov.in are welcome. We wish you all free from failures and a joyful life!

You may visit our web site for your comments/suggestions or any queries : www.sfaindia.org

Kalpakkam (T.Jayakumar) 31-01-2013 (P.Parameswaran) Editors

We encourage you to join the society, Kindly fill up the application form (enclosed at the end of the newsletter) and contact secretary: pjayapal59@yahoo.co.in; alternatively, post your application with draft to Dr N.Eswara Prasad, Regional Director, **RCMA**, CEMILAC, Kanchanbagh, Hyderabad, 500 058

Page 3 of 15

Dr.P.Rama Rao, Former Secretary, DST Shri Ashok Nayak, HAL Dr.D.Banerjee, IISc Dr.A.R.Upadhya-NAL Dr.G.Malakondiah, DMRL Dr.S.Srikanth, NML Dr.Baldev Raj, President, INAE Dr.A. Venugopala Reddy, Formerly of RCMA Dr.A.C.Raghuram, Formely of NAL

President

Dr.K.Tamilmani, **CEMILAC**

Vice presidents

Dr.S.Bhoumik, NAL Dr.T.Jayakumar, IGCAR Dr.S.R.Singh, NML Dr.M.Srinivas, DMRL

General Secretary

Sri.P.Jayapal, RCMA (H/C)

Treasurer

Dr. Vijayakumar Varma, RCMA (F&F)

Joint Secretaries

Sri.Bahukhandi ,IOCL Dr.N.Eswara Prasad, RCMA Sri. Venkatesh, HAL

Editors of Newsletter:

Dr.T.Jayakumar, IGCAR Dr.P.Parameswaran, IGCAR

About the society

Aims and Objectives of **Society for Failure Analysis**

The aims and objectives of the Society shall be:

To serve as National Society to promote, encourage develop the growth of "Art and Science of Failure Analysis" and stimulate interest compilation of a database, for effective identification of root causes of failures and their prevention thereof.

To serve as a common forum for individuals, institutions, organizations and Industries interested in the above.

disseminate information concerning developments both in India and abroad in the related fields.

To organize lectures, discussions, conferences, seminars, colloquia, courses related to failure analysis and to provide a valuable feed back on failure analysis covering design, materials, maintenance and manufacturing deficiencies limitations.

To train personnel in investigation failures of engineering components and their mitigation.

To identify and recommend areas for research and development work in the Country relating to failure analysis.

To establish liaison with Government. individuals, institutions commercial and bodies failure analysis, on methodologies and to advise on request.

To cooperate with other professional bodies having similar objectives.

To affiliate itself to appropriate international organization(s), for promotion of common objectives and to represent them in India.

To organize regional chapters in different parts of the country as and when the need arises.

To do all such other acts as the Society may think necessary, incidental or conducive to the attainment of the aims and objectives of the Society.

Know your local centers

Page 4 of 15

FAILURE ANALYSIS IN AVIATION P. Jayapal CEMILAC, Bangalore

INTRODUCTION:

Failure in engineering is defined as inability of a system or component perform to its intended function. When one considers thousands of components which are fabricated and placed in service, it is not unusual to expect that some of them will fail prematurely. Simply from statistical view point it is not reasonable, with the present engineering practices, to expect NO FAILURE. However, even though the number of failures of a particular component may be small, they are important because thev affect manufacturer's reputation for reliability.

In some cases, particularly when failure results in personal injury or death it leads to expensive law suits. It is not unusual for aerospace industry under prodding from users to recall hundreds of aircrafts/components to correct a design or manufacturing defect even though the actual number of failures is very small. Hence failure investigation and analysis plays a vital role in aviation.

INCIDENT/ACCIDENT INVESTIGATION:

Whenever an aircraft or helicopter meets with an incident or accident, identifying the root causes of the incident or accident by a team of specialist is mandatory in aviation industry. The causes of the incident or

accident could be one or more of the following:

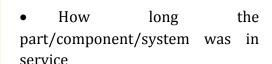
- Failure of a vital component/system
- Inadequate design
- Wrong assembly of parts
- Pilot error
- Bad weather
- Sabotage
- Change in operating environment
- Improper/poor maintenance of the aircraft/helicopter

There are various methodologies being followed by the experts in identifying the most probable causes for the incident/accident, and evolving suitable remedial measures for implementation to stop recurrence of such failures in future.

FAILURE INVESTIGATION:

In case of an incident or accident occurred due to failure of a vital part/component /system, failure investigation and analysis play a vital role. In any failure analysis, it is important to get as much information as possible from the failed component itself along with an investigation of prevailing conditions at the time of failure.

The general questions asked during the course of investigation/analysis are:



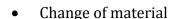
Never worry about the delay

of your success compared to

Page 5 of 15

"Success is no accident. It is hard work, perseverance, learning, studying, sacrifice and most of all, love of what you are doing or learning to do- *Pele*

- Was the part/component properly assembled and maintained
- What was the nature of stresses at the time of failure
- Was it subjected to any inservice abuse
- Whether the correct/specified material was used or not
- Whether correct manufacturing and heat treatment process was followed or not
- Was there any manufacturing deviation on the part
- Was there any change in the operating environment


Identifying answers to all these questions and required laboratory studies would reveal the most probable cause of the failure of the part/component/system.

CORRECTIVE ACTION:

following:--

In aviation industry it is important and mandatory to evolve and institute corrective /remedial measures to avoid recurrence similar failures in future once the most probable causes for the incident or accident are identified. of a failure case part/component/system, recurrence of similar failure can be avoided by one or more any of the

Change of design of the failed part/component/system

- Change of manufacturing/heat treatment processes
- Following correct assembly procedure etc.,

Under these circumstances, it is very important to identi the service and kept on ground without flying till the affected part/component/system flying is replaced with a serviceable part manufactured as per the above corrective measures. By this, it is assured that the aircraft/helicopters is fully serviceable and airworthy and can be released for further flying/use. In some cases, the affected aircrafts/helicopters are withdrawn from the service in a phased manner depending upon the criticality of the failure and action required thereafter.

CONCLUSION:

In any system, failure is inevitable. However, it should be contained/ avoided. Failure Analysis plays an important role in this regard. Systematic methodology of failure investigation and analysis is being followed in the aviation industry respect in investigation at component level, system level, aero engine level and aircraft/helicopter level. To identify the root cause of the failure of the components, sophisticated equipments and the knowledge of the experts for interpreting the results are

Page 6 of 15

very much essential. By pooling all the data related to failure analysis and precautionary measures available and following the same during the design and manufacturing stage, failures in any system can be minimized.

-----XXXX------

Tool Wear in Machining of Titanium Alloys: A Review

Shashikant Joshi, Asim Tewari and Suhas Joshi¹

Department of Mechanical Engineering Indian Institute of Technology Bombay, Powai, Mumbai - 400 076 India

1. Introduction

Titanium alloys have wide applications range in aerospace, chemical and medical industries due to high strength-to-weight ratio, corrosion resistance, and ability to maintain strength at high temperature. However, major challenge faced by these industries is to minimize the tool wear that occurs during machining of titanium alloys. The properties of titanium alloys that cause high tool wear are its poor thermal conductivity, low modulus of elasticity, chemical affinity with tool material and strength at high temperature [1, 2]. These properties introduce several difficulties machining of these materials. For example, poor thermal conductivity causes accumulation of heat at cutting edge, low modulus of elasticity induces chatter during machining and chemical affinity of titanium adversely affects the strength of tool material. Also, the ability to maintain strength at high temperature causes relatively large magnitude of cutting forces. Therefore, titanium allovs are usually classified as 'difficult-to-cut'

materials and extensive research is carried out to improve their machinability.

This article presents an overview important oftool wear mechanisms that prevail machining titanium alloys. It also dwells upon the influence of machining environment on tool wear and methods to improve the performance. Finally, tool recommendations to reduce tool wear have been presented.

2. Tool wear mechanisms in machining of Ti-alloys

These mechanism are summerized in Table 1. There are five main mechanisms of tool wear that usually prevail in machining of titanium alloys. Thease are-

- a. Abrasion: It involves removal of grains from tools by adhering chips or work piece. It occurs both on rake face and flank face, see Table 1. This wear intensifies with the passage of time and causes serious damage to the tool cutting edges [3].
- **b**. Adhesion: Due to seizure at

Page 7 of 15

The best and most beautiful things in the world cannot be seen, nor touched, but are felt in the heart.

- Helen Keller

work-tool interface, a strong bond between chip and tool gets formed. The adhered chip material gets removed during cutting process but in the process, removes a portion of cutting tool material with it [4], see Table 1.

- **Diffusion**: *c*. High tool work temperature and severe contact tool-chip provide between ideal conditions for diffusion of atoms from tool material. Diffusion of cobalt atoms reduces the bonding strength of carbide tools thereby causing accelerated crater wear on the tool face [3].
- d. Chipping and fracture: High temperature and stresses at the chiptool interface combined with brittleness of tool causes this kind of wear. Many a time, an increase in rake face wear leads to chipping and

fracture [2], see Table 1.

e. Coating de-lamination: It is the initial tool wear observed mainly on the rake face which is followed by the flank and rake face wear. It is attributed either to chemical reaction or the crack propagation at the interface due to difference in thermal coefficient of expansion between coating matrix and substrate. Smaller delaminations are observed in CVD coated tools due to greater adhesion of these coating [4], see Table 1.

The tool mechanisms wear described above are further explained with reasons for wear, typical figure, cutting tool material and processing parameters in Table 1.

Table 1 Various tool wear mechanisms in machining of titanium alloys

		Tool wear mechani	sms in titanium alloys			
		1001 wear meenan	sins in damam anoys			
Tool wear	Abrasion	Adhesion	Diffusion	Chipping and fracture	Coating de-lamination	
Reasons	Presence of hard particles in work Irregular material flow past the cutting edge at low cutting speed Built up edge formation at the cutting edge. It is dominated at flank face and nose.	Seizure of chip with the rake face due to high temperature and pressure. Thermal softening at high temperature increases this wear. It is dominated on the rake face	Higher cutting speed causes increased temperature at rake face and gives rise to smooth dissolution-diffusion wear. Diffusion of cobalt and tungsten atoms on the chip shows this kind of wear.	•Existence of high temperature and stress at the cutting edge coupled with brittleness of material causes chipping •Poor chip-groove utilization and a very sharp cutting edge	Work-tool interface temperature activates chemical reaction of coating with substrate, Crack at interface of coating and substrate causes this kind of wear	
Typical photo- graphs	Abrasion wear			Company of the Compan	Coulting let binnington PPO bool CLEARED VI ALIES 6107 79 CIT (18)	
Titanium alloy	Ti6Al2Sn4Zr6Mo	Ti6Al4V	Ti6Al4V	Ti6Al4V	Ti6Al4V	
Machining parameters	Turning operation, surface speed 60-100 m/min, feed rate 0.25 and 0.35 mm/ rev, depth of cut 2mm, dry machining.	Face milling, cutting speed 55-100 m/min, feed 0.1.0.15 mm/tooth, axial and radial depth of cut 2mm and 58 mm respectively. Coolant-Hocut-808 6-7% concentration	End milling, cutting speed for carbide insert 40-120 m/min. For PCD insert 120 to 250 m/min, axial depth of cut 1 mm per tooth. Full immersion cutting.	Turning operation, cutting speed 150-250 m/min depth of cut, 0.5 mm feed rate 0.15 mm/rev. Conventional coolant flow	Face milling, cutting speed 55-100 m/min, feed 0.1.0.15 mm/tooth, axial and radial depth of cut 2 mm and 58 mm respectively. Coolant-Hocut 808 6-7% concentration	
Tool material	Carbide insert CNMG 120408-890, CNMG 120408-883	20408-890, CNMG coating of PVD + TiN		CBN and uncoated carbide tool	Coated carbide tool with coating of PVD + TiN and CVD + TiCN / Al2O3	
References	[3]	[4]	[5]	[2]	[4]	

January 2013

Page 8 of 15

3. Influence of machining environment on wear mechanism

Wear mechanisms during machining of titanium alloys change with the machining environments, see Fig. 1 *a-d.* It shows SEM images of worn out coated tungusten carbide inserts at room temperature and LN2 environment during orthogonal turning [6].

At room temperature, wear is observed on the rake face. It appears smooth as there is a continuous contact of chip on the tool rake face. After delamination at the rake face, removal of substrate particles by abrasion process takes place. However, the material removal appears to be uniform with no fracture or crack on the rake face.

However, completely different wear mechanisms operate when cryogenic cooling environment is employed in machining, see Fig. 1 *c,d*. After coating delamination, chipping of tool nose

occurs. Instead of rake face, wear progresses on the tool flank. The wear appears non-uniform with no contact of chip to the rake face. The fracture of tool takes place with the crack appearing at the tool nose, see magnified image of Fig.1d.

Thus, a comparison of the worn out tool insert used at room temperature and LN2 machining environment shows different wear mechanisms. At room temperature, wear is observed on on the rake face and at LN2 temperature, wear takes place on flank face. At temperature, uniform attrition wear is observed on the rake face. On the other hand, at LN2 temperature, the chipping and fracture on the tool nose as well as flank take place.

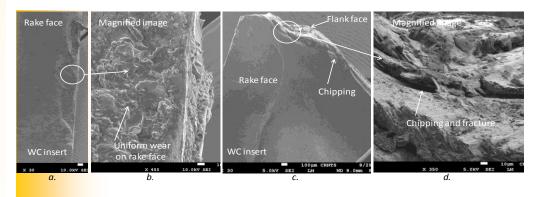


Fig. 1 a-d Influence of machining environment on tool wear mechanism [6]

Page 9 of 15

January 2013

4. Methods of reducing tool wear

This section gives a brief overview on recent investigations on improving the cutting tool performance in machining of titanium alloys. The key focus areas for the research are on tool coating, advanced tool material, machining environment and lubrication system which are described in a tabular form, see Table 2. The effectiveness of various tool coating, multi-coating on tool, and change in tool properties during machining operation are


widely investigated. Also, the performance of advanced tool materials like BCBN, PCD and CBN tools is evaluated and compared with the carbide tools. The Table 2 describes various methods adopted for improving cutting tool performance, cutting tools used, tool wear criteria, processing parameters and the results achieved in terms of the tool performance.

Table 2 Summary of research to minimize the tool wear in machining

Method	Cutting tool	Tool life criteria and Processing	Results			
	_	parameters				
Plasma	Boronized and	VB = 0.3 mm	Tool life - 63 min			
boronizing	non boronized	i)Orthogonal turning v -70 m/min; f - 0.2-	Thermo-chemical diffusion of			
cutting	WC inserts.	0.35 mm/rev	boron atoms diffuse to the too			
tool		ii) Face milling cutting v - 50-163 m/min; f	surface making hard boride zone.			
[9]		- 10–40 mm/min (dry machining)	Tool life increased by 300%.			
Multi-layer	Uncoated, TiAIN	Orthogonal turning of Ti6Al4V,	cBN and TiAIN + cBN coated			
coating on	coated, TiAIN +	V - 120 m/min; f - 0.075, 0.1, 0.125	WC/CO inserts exhibit largest			
inserts	cBN coated	mm/rev,(dry machining)	cutting forces at higher speeds.			
[10]	single/ multi-		cBN coated tool shows smallest			
	layer WC inserts		wear zone.			
Tool	Uncoated-	į) VB2≥0.15 mm	The highest tool life recorded for			
coating	carbide and	ii)Maximum flank wear≥0.2 mm	TiAlN-coated-drill was 7.8 min			
[5]	TiAIN-PVD	iii)chipping≥0.2 mm	after drilling the 25th hole at the			
	coated-	iv)catastrophic failure	lowest v - 25 m/min, f - 0.06			
	carbide drills	Drilling Ti6Al4V, v- 25- 55 m/min, f -0.06	mm/rev.			
		mm/rev,6%conc. of water-soluble coolant				
Thermal	i)CVD multi-	Localized flank wear VB3 > 0.9mm	Tool life - 4.5 min and 3.5 min for			
conductivit	layer coated	End milling of Ti-6242S	tool1 and 2at 125 m/min.			
y of tool	ii)Uncoated WC	cutting speeds, v - 60–150 m/min, f -	Wear in tool coating makes tool			
material	insert with	0.10-0.20mm/tooth, axial depths	tip thermally congested which			
[7]	cobalt binder	of cut 2–2.5mm	activates the tool wear mechanism			
Advanced	CBN and BCBN	Average flank wear reached 0.4 mm, or	Tool life of 39.7 min at 400 m/min			
Tool	inserts	when catastrophic fracture of the edge.	of cutting speed.			
material		High-speed slot milling Ti–6Al–4V Cutting	Non-uniform flank wear on BCBN.			
[8]		v - 300-400 m/min, depth of cut - 0.050-	The higher v and lower f are			
		0.100 mm, f - 0.050 - 0.100 mm/rev.	desirable.			
Advanced	i)Uncoated WC-	VB- 0.3 mm,	Tool life of 15 and 22 min for tool			
tool	Со	End milling of Ti6Al4V, v - 40- 160 m/min	1 and 2 at v – 55m/min and f -			

Page 10 of 15

In this article, major tool wear mechanisms in machining of titanium alloys have been presented. The mechanisms of tool wear change with the machining environment. Also, the recent areas of focus to improve the tool performance in machining the titanium alloy are discussed.

In order to minimize tool wear in machining of titanium alloys, controlling temperature at the cutting edge plays an important role. Low machining temperature prevents de-lamination weakening of the cutting edge. Further, tool temperature changes the thermal conductivity of the tool material, which creates thermally active zone at cutting This phenomenon edge. accelerates tool the wear mechanism. Therefore, to improve tool performance, the authors' research group has concentrated on controlling the work-tool interface temperature, optimization processing parameters and on changing the machining environment. Atomized mist jet lubrication technique appears to be a promising technique, as it directs pressurized mist of oil and lubrication at the cutting edge of Also, development of the tool. advanced tool material and coating material that withstand the high cutting temperature are the key areas to improve performance of cutting tools in machining of titanium alloys.

Acknowledgement

The authors acknowledge the financial support of National Centre for Aerospace Innovation and Research at IIT Bombay (A Department of Science and Technology, The Boeing Company and IIT Bombay Collaboration).

References

- [1] E. O. Ezugwua, R. B. DSilvaa, J. Bonneya, A. R. Machadob, Evaluation of the performance of CBN tools when turning Ti–6Al–4Valloy with high pressure coolant supplies, *Int. Journal of Machine Tools & Manufacture*, 45 (2005), pp. 1009–1014.
- [2] Hou Zhen-Bin, R. K., On a Thermo mechanical Model of Shear Instability in Machining. *Annals of the ClRP*, v44, n1 (1995), pp.
- [3] A. Jawaid, C. H. Che-Haron, A. Abdullah, Tool wear characteristics in turning of titanium alloy Ti-6246, *J. of Materials Processing Technology*, 92-93 (1999), pp. 329-334.
- [4] A. Jawaid, S. Sharif, S. Koksal, Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy, *J. of Materials Processing Technology*, 99 (2000), pp. 266-274.
- [5] A. K. M. Nurul Amina, Ahmad F. Ismail, M.K. Nor Khairusshima, Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy Ti–6Al–4V, *J. of Materials Processing Technology*, 192–193 (2007), pp.147–158.
- [6] Shashikant Joshi, AsimTewari, Suhas Joshi, Experimental work on machining of titanium (Ti6Al4V), at National Centre for Aerospace Innovation and Research (NCAIR), IIT Bombay (2012).
- [7] H.A. Abdel-Aal, M. Nouari, M. ElMansori, Influence of thermal conductivity on wear when machining titanium alloys, *Tribology International*, 42 (2009), pp. 359–372.
- [8] Z.G. Wang, Y.S. Wong, M. Rahman, High-speed milling of titanium alloys

Page 11 of 15

- using binderless CBN tools, *International J of Machine Tools & Manufacture*, 45 (2005), pp.105–114.
- [9] S. Basturk, F. Senbabaoglu, C. Islam, M. Erten, I. Lazoglu, T. Gulmez, Ti machining with new plasma boronized cutting tools, *Annals of CIRP*, 59 (2010), pp. 101–104.
- [10] T. Ozel, M. Sima, A.K. Srivastava, B. Kaftanoglu, Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations, *Annals of CIRP*, 59 (2010), pp. 77–82.

Cross word puzzle on failure analysis terminology

See page 14 for answers:

Ring finds rest as

embedded inclu	ısion [8]	
		Use PI model for seeing what happens under compression [7]
		Hundred marks over NH [7]

Society for Failure Analysis Application Form

Society for Failure Analysis

DERABAQ.		C/O certi Hyde	Society for Failure Analysis C/O Centre for Military Airworthiness & certification, RCMA (Materials) Hyderabad550 058 Please √applicable member					Phone: 040-24340750; 24348377; Fax: 040-24341827 E-mail: rdrcma.mat@cemilac.drdo.in						
	DERA		Pleas	e√appl	licable	m	ember				Life Mem	ber		
	Name in B	lock L	etters											
	First Date of bir	rth			Middle				La	st				
			Husband's							1				
	Present O	ccup	ation /Desi	gnation	and office	addres	s:	Phone: Mobile: Fax: Email:						
	Academi	c & Pr	ofessional	Qualific	ations:									
	Home ad	dress:								Phor Mob Fax:	oile:			
L	Address fo	or corr	espondenc	σ.	office		Home			E-mo	<u> </u>			
			•	••	ooo			ш						
	Profession Endorsem	_	perience: y SFA Mem	ber										
	Name						Mem	oersh	ip No.		Signature			
	Primary Fi	eld of	Interest: (p	olease n	nark 1,2,3 i	n the in	order of	prefe	erence	e)				
	Strategic		Power		Foundry		Welding			Heavy i	industry	transpor	ŀ	
	Design & Failures		Quality contr	ol	Petrochemic	al 🔲	Consulta services	ncy /		Materia manufa		Education	n	
	(Please re Subscripti	efer to ion de hould l	be made by	list)			ety for Fa	ilure A	analysis	s", pay	able at Hyde	erabad. (Outsta	 ıtior
	Amount	Rs.		Cheque	/ D.D. No					Do	ated			
	Bank Nam	ne					Brar	nch						
Category				Amount Pay						able				
				Admiss (One	sion Fee time)	Yearly Subscription				Total o			al on joi	on joining
Member				Rs.50	- /	Rs.200 (annual)			R			Rs.250	0/-	
	Life Memb	oer		Rs.50		Rs.1500)						Rs.155	50/-
эс	ted, I agre	ee to	the applic accept to promote it	pay the			subscrip	otion,	to ab	ide by	the Article:	s of Asso	ociatio	on
nat	ure of the	Appl	icant											
$oxed{L}$			·				Jse Only	/						
1	Membersh	nin		I Do	ite of Enroln	nent				I Ch	apter			

13.	Office Use Only							
	Membership No.	Date of Enrolment	Chapter					
	Amount Paid (Rs)	Receipt No. / Date						

Page 13 of 15

Books

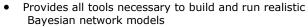
Machinery Failure Analysis and

Troubleshooting: Heinz P. Bloch, Fred K. Geitner, Butterworth-

Heinemann, 10-Dec-2012, 760pp

Structured to teach failure identification and analysis methods that can be applied to almost all problem situations, this eagerly awaited update takes in the wealth of technological advances and changes in approach seen since the last edition published more than a decade ago. Covering both the engineering detail and management theory, Machinery Failure Analysis and Troubleshooting provides a robust go-to reference and training resource for all engineers and managers working in manufacturing and process plants.

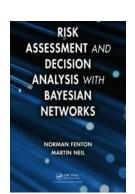
Risk Assessment and Decision Analysis with Bayesian Networks


Published:

November 07, 2012 by CRC Press - 524 Pages

Author(s):

Norman Fenton, **Queen Mary University of London, UK**; Martin Neil,**Queen Mary** University of London, UK



- Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more
- Introduces all necessary mathematics, probability, and statistics as needed

Answers to the crossword:

Ring finds rest as embedded inclusion [8]

	S T R					S	eeing v	nodel for what happens ompression [7]
	1	М	Р	L	0	D	Е	
	N							,
	G							
	Е							
C H E V	R	0	N		Hundred	l mark	s over	NH [7]

Page 14 of 15

Events in the pipeline

1st International Conference on Structural Integrity (ICONS-2014)

The First International Conference on Structural Integrity (ICONS-2014) is being organised during February 4-7, 2014 by Indira Gandhi Center for Atomic Research (IGCAR) in Kalpakkam, in joint collaboration with Indian Institute of Metals (IIM), Kalpakkam Chapter, Indian Institute of Welding (IIW), Chennai Branch and Society for Failure Analysis (SFA), Chennai Center. Delegates from R&D and academic institutes and industry will take part in ICONS-2014 to share the state-of-the-art advances in various aspects of structural integrity. International experts will deliver invited talks in structured technical sessions. The scope of ICONS-2014 includes all aspects of structural integrity, but not limited to

- Mechanical property evaluation
- Numerical modeling and validation
- Fatigue and fracture mechanics
- Creep and Corrosion
- Design and stress analysis
- Fabrication technology, CAD, CAM
- Metal joining and welding
- Hard facing and tribology
- Microstructure characterisation
- Nondestructive evaluation
- Quality assurance
- ISI, Condition monitoring and robotics
- Reliability and regulatory aspects
- Failure analysis and life prediction
- Damage mechanics
- Structural health monitoring

For more details, please contact:

Dr. T. Jayakumar

Chairman, Organising Committee, ICONS-2014 Distinguished Scientist and Director, Metallurgy & Materials Group Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam - 603102 (Tamil Nadu), India

Phone: 044-27480107 / 27480232 (O)

044-27481333 / 27487740 (R)

Fax: 044-27480075 / 27480356

Email: icons2014@igcar.gov.in

SFA Newsletter

January 2013

Page 15 of 15

Wear of Materials 2013 19th International Conference on Wear of Materials Portland, Oregon, USA | 14-18 April 2013

www.wearofmaterials.org

We are on the Web! Please visit www.sfaindia.org

For Private circulation only

To

From Society for Failure Analysis (SFA) C/O Centre for Military Airworthiness & Certification, RCMA, Kanchanbagh Hyderabad-500058